57 research outputs found

    Comparación de métodos preparativos de tejidos para la extracción de proteínas de la mazorca de cacao (Theobroma cacao L.)

    Get PDF
    Cocoa, Theobroma cacao L. is one of the main tropical industrial crops. Cocoa has a very high level of interfering substances, such as polysaccharides and phenolic compounds that could prevent the isolation of suitable protein. Efficient methods of protein extraction are a priority to successfully apply proteomic analyses. We compared and evaluated two methods (A and B) of tissue preparation for total protein extract by phenol/SDS extraction protocol. The difference in the application of the two methods was that extensively washed dry powder of pod tissue were made in Method A, whereas that crude extract were prepared Method B. Extracted proteins were examined using one-dimensional electrophoresis (1-D). Results show that each extraction method isolated a unique subset of cocoa pod proteome. Principal component analysis showed little variation in the data obtained using Method A, while that in Methods B showed no low reproducibility, thus demonstrating that Method A is a reliable for preparing cocoa pod proteins. The protocol is expected to be applicable to other recalcitrant plant tissues and to be of interest to laboratories involved in plant proteomics analyses. A combination of extraction approaches is recommended for increasing proteome coverage when using gel-based isolation techniques.El cacao, Theobroma cacao L. es uno de los principales cultivos tropicales industriales. La mazorca de cacao tiene un nivel muy alto de sustancias interferentes, tales como polisacáridos y compuestos fenólicos, que podrían impedir el aislamiento adecuado de la proteína. El uso de métodos eficientes de extracción de proteínas es una prioridad para aplicar con éxito los análisis proteómicos. Nosotros comparamos y evaluamos dos métodos preparativos (A y B) de tejidos para la extracción de proteína total mediante el protocolo de extracción con fenol/SDS. La diferencia entre los dos métodos fue extensivos lavados del polvo seco, obtenido mediante trituración con nitrógeno, de la mazorca fueron realizados en el Método A, mientras que un extracto crudo se preparó en el Método B. Extracciones proteicas fueron examinadas utilizando electroforesis monodimensional (1-D). Los resultados muestran que cada método de extracción aisló un único subconjunto del proteoma de las mazorcas de cacao. El análisis de componentes principales mostró poca variación en los datos por el Método A, mientras que el Método B fue poco reproducible, lo que demuestra que el Método A de extracción es un método fiable para la preparación de proteínas de las mazorcas de cacao. Se espera que el protocolo sea aplicable a otros tejidos de plantas recalcitrantes y podría ser de interés para los laboratorios involucrados en análisis de proteómica de plantas. Se recomienda una combinación de los enfoques de extracción para aumentar la cobertura del proteoma utilizando las técnicas de separación a base de gel.This work has been supported by grants from the Senescyt-Government of Ecuador (UTEQ-Ambiental-9-FCAmb-IFOR-2014-FOCICYT002), AMM holds a grant MAEC-AECID (2014-2015) of Spain

    A Focused Multiple Reaction Monitoring (MRM) Quantitative Method for Bioactive Grapevine Stilbenes by Ultra-High-Performance Liquid Chromatography Coupled to Triple-Quadrupole Mass Spectrometry (UHPLC-QqQ)

    Get PDF
    Grapevine stilbenes are a family of polyphenols which derive from trans-resveratrol having antifungal and antimicrobial properties, thus being considered as phytoalexins. In addition to their diverse bioactive properties in animal models, they highlight a strong potential in human health maintenance and promotion. Due to this relevance, highly-specific qualitative and quantitative methods of analysis are necessary to accurately analyze stilbenes in different matrices derived from grapevine. Here, we developed a rapid, sensitive, and specific analysis method using ultra-high-performance liquid chromatography coupled to triple-quadrupole mass spectrometry (UHPLC-QqQ) in MRM mode to detect and quantify five grapevine stilbenes, trans-resveratrol, trans-piceid, trans-piceatannol, trans-pterostilbene, and trans-ε-viniferin, whose interest in relation to human health is continuously growing. The method was optimized to minimize in-source fragmentation of piceid and to avoid co-elution of cis-piceid and trans-resveratrol, as both are detected with resveratrol transitions. The applicability of the developed method of stilbene analysis was tested successfully in different complex matrices including cellular extracts of Vitis vinifera cell cultures, reaction media of biotransformation assays, and red wine.A.M.-M. acknowledges a grant from Conselleria d’Educacio, Cultura I Sport de la Generalitat Valenciana (FPA/2013/A/074). This work has been supported by grants from University of Alicante (VIGROB-105), the Spanish Ministry of Economy and Competitiveness (BIO2014-51861-R), and European funds for Regional development (FEDER)

    Production of highly bioactive resveratrol analogues pterostilbene and piceatannol in metabolically engineered grapevine cell cultures

    Get PDF
    Summary Grapevine stilbenes, particularly trans-resveratrol, have a demonstrated pharmacological activity. Other natural stilbenes derived from resveratrol such as pterostilbene or piceatannol, display higher oral bioavailability and bioactivity than the parent compound, but are far less abundant in natural sources. Thus, to efficiently obtain these bioactive resveratrol derivatives, there is a need to develop new bioproduction systems. Grapevine cell cultures are able to produce large amounts of easily recoverable extracellular resveratrol when elicited with methylated cyclodextrins and methyl jasmonate. We devised this system as an interesting starting point of a metabolic engineering-based strategy to produce resveratrol derivatives using resveratrolconverting enzymes. Constitutive expression of either Vitis vinifera resveratrol O-methyltransferase (VvROMT) or human cytochrome P450 hydroxylase 1B1 (HsCYP1B1) led to pterostilbene or piceatannol, respectively, after the engineered cell cultures were treated with the aforementioned elicitors. Functionality of both gene products was first assessed in planta by Nicotiana benthamiana agroinfiltration assays, in which tobacco cells transiently expressed stilbene synthase and VvROMT or HsCYP1B1. Grapevine cell cultures transformed with VvROMT produced pterostilbene, which was detected in both intra- and extracellular compartments, at a level of micrograms per litre. Grapevine cell cultures transformed with HsCYP1B1 produced about 20 mg/L culture of piceatannol, displaying a sevenfold increase in relation to wild-type cultures, and reaching an extracellular distribution of up to 45% of total production. The results obtained demonstrate the feasibility of this novel system for the bioproduction of natural and more bioactive resveratrol derivatives and suggest new ways for the improvement of production yield

    Tailoring tobacco hairy root metabolism for the production of stilbenes

    Get PDF
    Tobacco hairy root (HR) cultures, which have been widely used for the heterologous production of target compounds, have an innate capacity to bioconvert exogenous t-resveratrol (t-R) into t-piceatannol (t-Pn) and t-pterostilbene (t-Pt). We established genetically engineered HR carrying the gene encoding stilbene synthase (STS) from Vitis vinifera and/or the transcription factor (TF) AtMYB12 from Arabidopsis thaliana, in order to generate a holistic response in the phenylpropanoid pathway and coordinate the up-regulation of multiple metabolic steps. Additionally, an artificial microRNA for chalcone synthase (amiRNA CHS) was utilized to arrest the normal flux through the endogenous chalcone synthase (CHS) enzyme, which would otherwise compete for precursors with the STS enzyme imported for the flux deviation. The transgenic HR were able to biosynthesize the target stilbenes, achieving a production of 40 μg L-1 of t-R, which was partially metabolized into t-Pn and t-Pt (up to 2.2 μg L-1 and 86.4 μg L-1, respectively), as well as its glucoside piceid (up to 339.7 μg L-1). Major metabolic perturbations were caused by the TF AtMYB12, affecting both primary and secondary metabolism, which confirms the complexity of biotechnological systems based on seed plant in vitro cultures for the heterologous production of high-value molecules

    Synergistic effect of methyljasmonate and cyclodextrin on stilbene biosynthesis pathway gene expression and resveratrol production in Monastrell grapevine cell cultures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Plant cell cultures have been shown as feasible systems for the production of secondary metabolites, being the elicitation with biotic or abiotic stimuli the most efficient strategy to increase the production of those metabolites. Vitaceae phytoalexins constitute a group of molecules belonging to the stilbene family which are derivatives of the <it>trans</it>-resveratrol structure and are produced by plants and cell cultures as a response to biotic and abiotic stresses. The potential benefits of resveratrol on human health have made it one of the most thoroughly studied phytochemical molecules. The aim of this study was to evaluate the elicitor effect of both cyclodextrin (CD) and methyljasmonate (MeJA) on grapevine cell cultures by carrying out a quantitative analysis of their role on resveratrol production and on the expression of stilbene biosynthetic genes in <it>Vitis vinifera </it>cv Monastrell albino cell suspension cultures.</p> <p>Findings</p> <p>MeJA and CD significantly but transiently induced the expression of stilbene biosynthetic genes when independently used to treat grapevine cells. This expression correlated with resveratrol production in CD-treated cells but not in MeJA-treated cells, which growth was drastically affected. In the combined treatment of CD and MeJA cell growth was similarly affected, however resveratrol production was almost one order of magnitude higher, in correlation with maximum expression values for stilbene biosynthetic genes.</p> <p>Conclusion</p> <p>The effect of MeJA on cell division combined with a true and strong elicitor like CD could be responsible for the observed synergistic effect of both compounds on resveratrol production and on the expression of genes in the stilbene pathway.</p
    corecore